FROM COND. MATTER PHYS., CALTECH 818-683-9060 12.06.1 From: -John Wei 818 345 2046 Hor APS Tunneling Spectroscopy of the Colossal Magnetoresistive La_{0.7}Ca_{0.3}MnO₃ Epitaxial La_{0.7}Ca₀ Nai-Chang Yeh¹, John Y.T. Wei¹, Richard P.Vasquez², and Sebastian M, Maurer¹ ¹Dept.of Physics, California Institute of Technology, Pasadena, CA 91125 ²Center for Space Microelectronics Technology, Jet Propulsion Laboratory, California Institute of '1'ethnology, Pasadena, CA91109 ## ABSTRACT: We present tunneling spectroscopy data taken with a low-temperature scanning tunneling microscope on epitaxial films of the colossal magnetoresitive (CMR) perovskite La_{0.7}Ca_{0.3}MnO₃. At 77K, well below the Curie temperature, the normalized tunneling conductance (dI/dV)(I/V)-l exhibits pronounce peaks and gap-like structures, bearing notable resemblance to the half-metallic density-of-states spectrum calculated for the itinerant bands in the ferromagnetic state¹. These characteristics arc. absent at room temperature in the paramagnetic state, as well as in the undoped compound I aMnO₃ which shows no CMR behavior, We discuss these spectral differences in the context of exchange interaction between the itinerant electrons and its role for CMR in the manganites. ## REFERENCES: ¹W.E.Pickett and D, J. Singh, Phys.Rev.B **53**,1146 (1996) ## **ACKNOWLEDGEMENTS:** **NASA** **Packard Foundation**